1. 已知二次函数在和时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数的图象与二次函数的图象都经过点,求和的值;
(3)设二次函数的图象与轴交于点,(点在点的左侧),将二次函数的图象在点,间的部分(含点B和点)向左平移个单位后得到的图象记为,同时将(2)中得到的直线向上平移个单位.请结合图象回答:当平移后的直线与图象有公共点时,求的取值范围.
(7分)
2. 在中,,,是的中点,是线段上的动点,将线段绕点顺时针旋转得到线段.
(1)若且点与点重合(如图1),线段的延长线交射线于点,请补全图形,并写出的度数;
(2)在图2中,点不与点,重合,线段的延长线于射线交于点,猜想的大小(用含的代数式表示),并加以证明;
(3)对于适当大小的,当点在线段上运动到某一位置(不与点,重合)时,能使得线段的延长线与射线交于点,且,请直接写出的范围.
(7分)
3. 在平面直角坐标系中,对于任意两点与的“非常距离”,给出如下定义:
若,则点与点的“非常距离”为;
若,则点与点的“非常距离”为.
例如:点,点,因为,所以点与点的“非常距离”为,也就是图1中线段与线段长度的较大值(点为垂直于轴的直线与垂直于轴的直线交点).
(1)已知点,为轴上的一个动点,
①若点与点的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点与点的“非常距离”的最小值;
(2)已知是直线上的一个动点,
①如图2,点的坐标是(0,1),求点与点的“非常距离”的最小值及相应的点的坐标;
②如图3,是以原点为圆心,1为半径的圆上的一个动点,求点与点的“非常距离”的最小值及相应的点与点的坐标.
(8分)